Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1229-3857(Print)
ISSN : 2288-131X(Online)
Korean Journal of Environment and Ecology Vol.32 No.5 pp.469-477
DOI : https://doi.org/10.13047/KJEE.2018.32.5.469

Predicting potential habitat for Hanabusaya asiatica in the North and South Korean border region using MaxEnt

Chan Yong Sung2, Hyun-Tak Shin3, Song-Hyun Choi4*, Hong-Seon Song5
2Dept. of Urban Engineering, Hanbat National Univ, 3DMZ Botanic Garden, Korean National Arboretum, 4Dept. of Landscape Architecture, Pusan National Univ, 5Dept. of Plant Resource, Kongju National Univ
* 교신저자 Corresponding author: Tel: +82-55-350-5401, Fax: +82-55-350-5409, E-mail: songchoi@pusan.ac.kr

Abstract

Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were 778 km², and the KBA candidate area identified by taking into account existing protected areas was 1,321 km². Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.

MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측

성찬용2⋅신현탁3⋅최송현4*⋅송홍선5
2한밭대학교 도시공학과, 3국립 DMZ자생식물원, 4부산대학교 조경학과, 5공주대학교 식물자원학과

초록

금강초롱꽃(Hanabusaya asiatica)은 한반도 중동부에서만 제한적으로 분포하는 고유종으로, 분포범위가 좁고 개체수가 적어 서식지를 세계자연보전연맹(IUCN, International Union for Conservation of Nature) 중요 생물다양성 보호지역(key biodiversity areas: KBAs)으로 지정하여 보호할 필요가 있다. 본 연구에서는 maximum entropy(MaxEnt) 모형을 통해 남북한 접경지역 내 금강초롱꽃 자생가능지를 추정하고 이를 바탕으로 KBAs 후보지를 설정하였다. 기계학습(machine learning) 알고리즘의 하나인 MaxEnt 모형은 생물종의 출현지점만 기록한 데이터(presence-only data)로도 생물종 분포를 편향되지 않게 예측할 수 있는 생물종 분포 모형으로, 본 연구의 연구대상지처럼 현장 조사가 어려운 경우 유용한 방법이다. 본 연구에서는 현장 조사를 통해 수집한 38개 금강초롱꽃 출현 위치와 기후, 지형, 식생 등을 측정한 11개 환경변수를 이용하여 MaxEnt 모형을 학습하여 남북한 접경지역의 모든 지점에 대해 금강초롱꽃 출현확률을 추정하였다. MaxEnt 모형 분석 결과, 금강초롱꽃 출현확률이 0.5를 넘어 금강초롱꽃 분포가능지로 분류된 지역은 778km²이었고, 추정된 서식가 능지와 기지정된 보호지역 경계를 고려하여 설정한 최종 KBA 후보지는 1,321km²이었다. 또한 11개 환경변수 중 표고와 연평균 강수량, 생장기 평균 강수량, 최한월 평균 기온이 금강초롱꽃 출현확률에 영향을 미쳐, 금강초롱꽃은 고도가 높은 서늘한 지역을 선호하는 것으로 분석되었다. 이와 같은 금강초롱꽃의 분포지 선호도 분석 결과는 KBA 후보지 설정 뿐 아니라 남북한 통일이나 기후변화와 같은 시나리오에 대비한 금강초롱꽃 보존 계획 수립의 기초자료로 활용될 수 있을 것으로 기대된다.
 

Figure

Table